Deepseek 推理模型 (deepseek-reasoner)

2025-02-05 11:04 更新

deepseek-reasoner 是 DeepSeek 推出的推理模型。在输出最终回答之前,模型会先输出一段思维链内容,以提升最终答案的准确性。我们的 API 向用户开放 deepseek-reasoner 思维链的内容,以供用户查看、展示、蒸馏使用。

在使用 deepseek-reasoner 时,请先升级 OpenAI SDK 以支持新参数。

pip3 install -U openai

API 参数

  • 输入参数:max_tokens:最终回答的最大长度(不含思维链输出),默认为 4K,最大为 8K。请注意,思维链的输出最多可以达到 32K tokens,控思维链的长度的参数(reasoning_effort)将会在近期上线。
  • 输出字段:reasoning_content:思维链内容,与 content 同级,访问方法见访问样例content:最终回答内容
  • 上下文长度:API 最大支持 64K 上下文,输出的 reasoning_content 长度不计入 64K 上下文长度中
  • 支持的功能:对话补全对话前缀续写 (Beta)
  • 不支持的功能:Function Call、Json Output、FIM 补全 (Beta)
  • 不支持的参数:temperature、top_p、presence_penalty、frequency_penalty、logprobs、top_logprobs。请注意,为了兼容已有软件,设置 temperature、top_p、presence_penalty、frequency_penalty 参数不会报错,但也不会生效。设置 logprobs、top_logprobs 会报错。

上下文拼接

在每一轮对话过程中,模型会输出思维链内容(reasoning_content)和最终回答(content)。在下一轮对话中,之前轮输出的思维链内容不会被拼接到上下文中,如下图所示:

请注意,如果您在输入的 messages 序列中,传入了reasoning_content,API 会返回 400 错误。因此,请删除 API 响应中的 reasoning_content 字段,再发起 API 请求,方法如访问样例所示。

访问样例

下面的代码以 Python 语言为例,展示了如何访问思维链和最终回答,以及如何在多轮对话中进行上下文拼接。

非流式示例

from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages
)

reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content

# Round 2
messages.append({'role': 'assistant', 'content': content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages
)
# ...

流式示例

from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages,
    stream=True
)

reasoning_content = ""
content = ""

for chunk in response:
    if chunk.choices[0].delta.reasoning_content:
        reasoning_content += chunk.choices[0].delta.reasoning_content
    else:
        content += chunk.choices[0].delta.content

# Round 2
messages.append({"role": "assistant", "content": content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages,
    stream=True
)
# ...


以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号