18. Time Series / Date functionality
Time Series / Date functionality
pandas has proven very successful as a tool for working with time series data, especially in the financial data analysis space. Using the NumPy datetime64
and timedelta64
dtypes, we have consolidated a large number of features from other Python libraries like scikits.timeseries
as well as created a tremendous amount of new functionality for manipulating time series data.
In working with time series data, we will frequently seek to:
- generate sequences of fixed-frequency dates and time spans
- conform or convert time series to a particular frequency
- compute “relative” dates based on various non-standard time increments (e.g. 5 business days before the last business day of the year), or “roll” dates forward or backward
pandas provides a relatively compact and self-contained set of tools fo